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22 Abstract   

Uncertainties  in gridded and  regional  climate  estimates  of  precipitation  are  large  at  high  
elevations,  where  observations  are  sparse  and spatial  variability is  substantial.  We  explore  these  
uncertainties  for  water  year  2008  across  California’s  Sierra  Nevada  in 10  datasets:  six  regional  
climate  downscalings  generated using the  Weather,  Research,  and Forecast  (WRF)  model  at  
convection-permitting resolution  with differing lateral  boundary conditions  and  microphysical  
parameterizations,  and four  gauge-based,  interpolation-gridded precipitation datasets.  
Precipitation from  these  10  datasets  is  evaluated against  95 snow  pillows  and a  precipitation 
dataset  inferred from  stream  gauges  using a  Bayesian inference  method. D uring  water  year  2008,  
the  gridded datasets  tend to  underestimate  frozen precipitation on the  windward slope  of  the  
Sierra  Nevada,  particularly  in the  vicinity of  Yosemite  National  Park. T he  WRF  simulations  with  
single-moment  microphysics  tend to overestimate  precipitation throughout  much of  the  region,  
whereas  the  WRF  simulations  with double-moment  microphysics  tend to  better  agree  with both  
the  snow  pillows  and inferred precipitation estimates,  although they somewhat  overestimate  the  
windward/leeside  precipitation contrast  in  the  northern Sierra  Nevada.  WRF  simulations, i n 
particular  those  with  single-moment  microphysics,  better  distinguish spatial  patterns  of  wet-
versus-dry pillows  and watersheds  over  the  water  year  than the  gridded estimates.  Our  results  
suggest  treating gauge-based datasets  as  ‘truth’  may give  a  misleading representation of  model  
accuracy,  since  these  gauge-based datasets  often have  issues  of  their  own.  
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43 1 Introduction  

Quantitative  precipitation estimates  in mountainous  areas  are  essential  for  hydrologic  
modeling and water  management.  Despite  being critical,  accurate  precipitation  estimates  are  
notoriously difficult  to  produce  in  areas  of  complex  terrain due  to limitations  of  observing 
systems  and large  spatial  variability in  these  regions.  Ground-based radars  can provide  reliable  
estimates  of  precipitation over  regions  with  homogeneous  topography,  but  suffer  from  beam  
blocking and other  issues  in complex  terrain (Nelson et  al. 2016;   Willie  et  al  2016).  Large  spatial  
variability, due   to meteorological  response  to terrain features,  makes  it  difficult  to  translate  point  
measurements  into gridded estimates,  a  problem  confounded by the  difficulty of  attaining  a  
dense  network of  point  measurements  in the  complex  terrain.  Thus  hydrologists  often turn to 
gridded precipitation  datasets,  created either  through statistical  methods  applied to in  situ data  
(hereafter  gridded estimates)  or  through  dynamical  downscaling of  reanalysis  datasets  with 
atmospheric  models.  

Several  daily statistically gridded  precipitation  estimates  exist  for  the  continental  United 
States  at  resolutions  as  fine  as  1  km  (e.g.,  see  Table  1 in Lundquist  et  al. 2015, he  reafter  L15).  
These  datasets  interpolate  gauge  data  to a  grid using numerical  methods;  the  majority  of  these  
scale  their  daily values  such that  their  long-term monthly means  match the  Precipitation-
elevation Regressions  on Independent  Slopes  Model  (PRISM;  Daly  et  al.  1994)  long-term 
monthly means.  Because  they rely directly on  in situ data,  these  datasets  provide  an estimate  of  
precipitation with uncertainties  commensurate  with the  uncertainties  in  the  in  situ data  
themselves  where  in situ data  are  dense, a nd with greater  uncertainty where  in situ  data  are  
sparse,  such as  at  high elevations.  

With the  advent  of  more  computing  power, e ver-improving atmospheric  models, a nd 
better-constrained atmospheric  reanalyses,  dynamical  downscaling of  reanalysis  datasets  to 
convection-permitting resolution has  become  a  viable,  if  more  computationally expensive,  
alternative  to statistical  downscaling for  high-resolution precipitation  estimation.  Dynamical  
downscaling uses  a  state-of-the-art  numerical  weather  model  to  estimate  the  atmospheric  state  at  
high resolution given  prescribed large-scale  conditions  (e.g.,  see  review  by Xue  et  al. 2014) . T o  
generate  high resolution historical  data, t he  prescribed large-scale  conditions  are  generally from  
reanalysis  datasets.  Because  dynamical  downscaling uses  a  numerical  weather  model  to calculate  
precipitation based on discretized equations  of  state,  it  can represent  physical  processes  not  
captured by the  linear  precipitation-elevation regressions  used by PRISM.    

The  skill  of  dynamical  downscaling to  accurately represent  reality is  a  function of  the  
model  physics  and accuracy of  the  large  scale  conditions,  and has  the  largest  potential  to  improve  
over  coarser  scale  reanalyses  in areas  of  complex  terrain and coastlines  (Xue  et  al. 2014;   Feser  et  
al.  2010).  Prior  studies  have  shown that  microphysical  parameterizations  have  large  impacts  on  
precipitation type/phase  in the  cloud and on  the  ground (Minder  and  Kingsmill  2013  and Jankov 
et  al.  2007,  2009,  2011), a nd that  precipitation sensitivity to microphysical  scheme  is  often larger  
than to other  physics  parameterizations  (Liu et  al. 2011) .  Although not  as  well  studied as  
sensitivity to physics  parameterizations,  dynamical  downscalings  are  also sensitive  to their  
lateral  boundary conditions  (Yang et  al.  2012), s o uncertainties  in reanalysis  datasets  create  
uncertainties  in the  downscaled data.  
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Evaluating high-resolution gridded precipitation datasets is challenging: Statistically 

gridded datasets often ingest most available in situ precipitation gauge data, making determining 
their skill versus that of dynamical downscalings tricky. In fact, many studies use PRISM-based 
gridded datasets to evaluate their dynamical downscalings (e.g. Caldwell et al. 2009), despite the 
uncertainties in the gridded datasets. These uncertainties can be large: For example, when 
compared with independent precipitation observations, PRISM-based gridded datasets have been 
shown to be off by up to a factor of two in mountainous terrain (Gutmann et al. 2012; Jeton et al 
2006). These uncertainties also have important implications for water resources because they can 
significantly impact water year total precipitation amounts: Henn et al. (2016b) showed using 
different gridded datasets in complex terrain could cause up to 40% differences in water year 
totals. 

Two data sources that have been largely untapped for precipitation dataset evaluation are 
stream gauges and snow pillows. Streamflow datasets are not used in any of the gridded datasets, 
to our knowledge, and thus serve as a completely independent dataset representing basin-mean 
precipitation; however, using them to validate precipitation estimates requires accounting for 
hydrologic processes that carry the precipitation to the streams. Henn et al. (2016a; hereafter 
H16) infer basin-mean precipitation from 56 streamflow gauges in the Sierra Nevada with 
Bayesian modeling, providing a streamflow-inferred precipitation dataset independent from 
gridded estimates of precipitation; this dataset includes its own range of uncertainty as part of the 
Bayesian modeling technique. Snow pillows offer the second widely unused in situ dataset for 
gridded precipitation validation: L15 quality controlled 20 years of snow pillow data across the 
Sierra Nevada from the California Department of Water Resources (CA DWR); some of these 
pillows and nearby snow courses have been used to adjust PRISM climatologies (L15), but the 
daily SWE amounts are not used directly in any of the gridded datasets. 

L15 evaluated two gridded datasets, Hamlet (Hamlet et al. 2010; Hamlet and Lettenmaier 
2005) and Livneh (Livneh et al. 2013), against the CA DWR snow pillows and found median 
errors for the entire period of ±10%. L15 further identified that during some years the two 
gridded datasets severely underpredicted precipitation during individual storms by as much as 
50%, leading to water year total errors of ~20%; water year 2008 (WY2008) showed the most 
severe underestimation in their 20-year study period, with two major storms having substantial 
snow underestimation in each dataset. L15 showed these errors occurred because of an increase 
in orographic precipitation gradient when the winds were more westerly/northwesterly than 
typical during precipitating days, and hypothesized that this shift was associated with more time 
spent in the storm’s cold sector. 

In this manuscript, we extend upon the results of L15 for WY2008, by comparing the 
snow pillow observations to four gridded datasets -- Hamlet, Livneh, Daymet (Thornton et al. 
1997; Thornton et al. 2014), and Newman (Newman et al. 2015). We assess whether the 
additional two gridded datasets, Daymet and Newman, also underpredict snow and total 
precipitation at high elevations in WY2008. We hypothesize that these two datasets will suffer 
similar biases in WY2008 as those in Hamlet and Livneh, since they use similar, terrain-based 
interpolation techniques, although we expect some variation across the gridded datasets because 
of differing methodological choices. In addition, we identify whether six dynamical 
downscalings suffer from the same deficiencies in WY2008, and hypothesize that the dynamical 
downscalings will not suffer from similar biases on the windward slope of the Sierra Nevada 
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because of their ability to represent orographic precipitation processes. We also investigate the 
sensitivity of the dynamical downscalings to their microphysical parameterizations and lateral 
boundary conditions to test whether the large scale uncertainties in reanalyses produce 
differences in precipitation comparable to those from microphysics parameterizations. Testing 
over the course of a water year (rather than performing case studies of individual storms) allows 
us to test whether differences in precipitation due to microphysical and large scale uncertainties 
accumulate over the course of the water year, and to see whether they are systematic or random 
in different parts of the Sierra Nevada. Finally, we compare the 10 precipitation estimates (4 
gridded and 6 dynamical downscalings) to inferred basin-mean precipitation from H16. The 
manuscript is laid out as follows: Section 2 describes the datasets and methods used in the 
manuscript; Section 3 explores the differences between the 10 precipitation estimates and the 
snow pillow and inferred precipitation amounts; and Section 4 provides a summary and 
discussion of the results. 
2 Datasets and methods 

2.1 WRF simulations 
Six dynamical downscalings of WY2008 were generated using the Weather, Research, 

and Forecast (WRF) model, version 3.6 (Skamarock et al. 2008). All simulations were initialized 
in July 2007 and run continuously through Oct. 1, 2008, with the first three months discarded as 
model spin-up. All six simulations were identically configured aside from the lateral boundary 
conditions and microphysics schemes used (Table 1). Half the simulations used lateral boundary 
conditions (LBCs) from the ERA Interim reanalysis (ERA-I; Dee et al. 2011), and half used the 
North American Regional Reanalysis (NARR; Mesinger et al. 2006). Each LBC was paired with 
one of three microphysics schemes: WRF Single-Moment 6-Class Scheme (WSM6; Hong and 
Lim 2006), the Morrison et al. (2009) double-moment scheme (Morr), or the Thompson et al. 
(2008) scheme (Thom), resulting in six simulations, which are hereafter identified as E.Morr, 
E.Thom., E.WSM6, N.Morr, N.Thom, and N.WSM6, where E. and N. refer to ERA-I and 
NARR, respectively. Approximate computational time per month of simulation is shown in 
Table 1. 

The simulations used an 18 km outer domain covering much of the intermountain west 
and stretching west across the northeastern Pacific Ocean, with a 6 km inner domain that 
extended across all of California (Fig. 1). Both domains used the Rapid Refresh Transfer Model 
for GCM applications (RRTMG; Iacono et al. 2008) for shortwave and longwave radiation and 
the Yonsei University planetary boundary layer scheme (Hong et al. 2006) with revised 
Mesoscale Model version 5 surface layer physics (Jimenez et al. 2012). The 18 km domain used 
the Kain-Fritsch convective parameterization (Kain 2004), while in the 6 km domain only 
resolved convection could occur. Spectral nudging was used in the 18 km domain to prevent 
simulation drift; nudging was applied with strength 0.0003 s-1 on winds and temperature above 
the 40th model level. The simulations used 82 vertical levels. 

A yearlong test simulation which used the above E.Morr configuration with the Noah 
land surface model (Tewari et al. 2004) revealed extremely cold surface temperature biases that 
developed in springtime (not shown). These biases were attributed to the representation of snow 
within the Noah land surface model (e.g., Barlage et al. 2015; Pavelsky et al. 2011), and thus the 
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simulations  used in this  manuscript  use  the  more  sophisticated Noah-MP  land surface  model  
(Niu et  al.  2011), w hich eliminates  the  springtime  biases  (not  shown).  

WRF  outputs  total  precipitation, snow, i ce, a nd graupel.  Thus  for  the  comparison with  
snow  pillow  data, t he  sum  of  snow,  ice,  and graupel  is  used as  frozen precipitation,  whereas  for  
the  comparison with the  Bayesian estimated precipitation,  total  precipitation  is  used.  

2.2 Statistically gridded precipitation estimates  

Four  datasets  that  interpolate  precipitation and  temperature  from  gauge  observations  and 
estimate  them  on a  grid that  extends  across  the  Continental  United States  are  used in this  
manuscript.   

As  discussed in more  detail  in Lundquist  et  al. ( 2015),  two  of  the  gridded 
precipitation/temperature  datasets,  Livneh (Livneh  et  al. 2013)   and Hamlet  (Hamlet  et  al.  2010;  
Hamlet  and Lettenmaier  2005)  (and many  other  gridded datasets  not  shown in this  manuscript),  
use  the  Parameter–Elevation  Regressions  on Independent  Slopes  Model  (PRISM;  Daly  et  al.  
1994,  2008)  climatology  to interpolate  precipitation over  topography.  Both  Livneh and Hamlet  
are  available  on a  1/16°  grid.  Both  datasets  used gauges  from  the  National  Climatic  Data  Center  
(NCDC)  Cooperative  Observer  (COOP)  network,  although they differ  slightly  in  their  criteria  for  
station inclusion.  Hamlet  uses  PRISM  to  rescale  temperature  over  topography, w hereas  Livneh 
uses  a  constant  lapse  rate  of  6.5  °C  km-1  for topographic  temperature  adjustment. H amlet  has  no 
data  available  in the  northeastern quadrant  of  our  focus  region after  2006 (see  greyed  region in 
Fig.  3e),  but  most  of  our  comparisons  focus  west  and south of  this  area.  

The  third  gridded  precipitation  dataset  used is  Daymet  (Thornton et  al. 1997;   Thornton  et  al.  
2014),  which  combines  a  Gaussian weighting filter  centered at  the  observation locations  with 
linear  regression to account  for  elevation changes  to solve  for  both daily  gridded  precipitation  
and temperature  minimum  and  maximum.  Daymet  is  available  on a  1km  grid;  prior  to 
interpolation to  the  WRF  grid described below  we  smooth Daymet  with a  5  km-wide  centered 
average.  Daymet  includes  both COOP  precipitation stations  and stations  in the  U.S. N atural  
Resources  Conservation Service  (NRCS)  Snowpack Telemetry  (SNOTEL)  network.  

The  fourth gridded precipitation  dataset,  Newman (Newman et  al. 2015) ,  uses  similar  gridding 
methodologies  as  the  other  three  datasets,  but  differs  in its  inclusion of  uncertainty  estimates  by 
generating an ensemble  of  estimates  following  the  methods  of  Clark and  Slater  (2006).  Newman 
uses  distance  dependent  weightings  from  nearby stations  with regression methods  to generate  the  
gridded precipitation  estimates,  where  the  regression residuals  are  used to generate  uncertainty 
estimates.  Topographic  slope  information  was  included in the  regressions  to account  in a  simple  
way for  windward and leeward  slope  precipitation differences.  The  individual  Newman 
precipitation and temperature  ensemble  members  are  available  on a  1/8°  grid. N ewman includes  
more  gauge  data  than  the  other  datasets,  including COOP  stations  and SNOTEL  as  well  as  
gauges  from  the  Community Collaborative  Rain, H ail,  and Snow  (CoCoRaHS)  network;  and the  
various  automated airport  weather  stations.  

Since  all  four  datasets  are  available  on  different  grids,  we  interpolate  them  using nearest-
neighbor  interpolation  to the  6 km  WRF  grid prior  to our  analysis. I n addition, f or  the  
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comparison to snow  pillow  data,  daily  frozen precipitation was  calculated by summing 
precipitation only on  days  with minimum  temperature  (Tmin)  less  than 0°C  (following L15).  
Because  of  its  ensemble  nature, t he  Newman dataset  required additional  processing:  Calculation 
of  frozen precipitation  in Newman used Tmin (computed from  the  dataset-native  temperature  
mean and range)  for  each ensemble  member  individually,  constructing an  ensemble  of  frozen 
precipitation. T hroughout  the  manuscript,  when only one  value  is  shown for  Newman 
precipitation or  frozen  precipitation, w e  are  showing the  ensemble  median. W e  also show  on a  
few  figures  the  25th  and  75th  percentiles  of  Newman precipitation or  frozen precipitation, i n 
addition to the  median,  to characterize  the  uncertainty captured by  the  ensemble.  

2.3 Snow  pillows  

The  CA  DWR  manages  a  network of  125  snow  pillows,  103 in  the  Sierra  Nevada  (Fig. 1, da  ta  
available  from  California  Data  Exchange  Center  2014);  95 of  these  pillows  report  enough quality  
data  in 2008 for  comparison to our  frozen precipitation datasets. T hese  are  generally located in 
flat  clearings  and measure  the  weight  of  snow  accumulating over  an area  of  about  7  m2  to  
determine  snow  water  equivalent  (SWE).    Because  pillows  can experience  several  hours  delay 
in responding to  changes  in SWE  (Beaumont  1965;  Johnson and Marks  2004), t hey are  not  as  
reliable  at  sub-daily  resolution, a nd thus  data  were  analyzed at  daily increments. A ll  positive  
daily changes  in measured snow  water  equivalent,  ΔSWE,  were  taken to  be  a  measure  of  daily  
snowfall.   An increase  in SWE  was  attributed  to snow  falling on  the  pillow, or   to liquid  water 
falling on  snow  already on the  pillow  and freezing into the  snowpack,  thereby increasing its  
density.   In freezing locations  where  a  snow  pillow  was  co-located with a  precipitation gauge,  
the  timing and amount  of  ΔSWE  closely tracked the  total  accumulated precipitation.   Exceptions  
occurred where  the  precipitation gauge  suffered severe  undercatch (in  those  cases  ΔSWE  
exceeds  measured precipitation)  or  during warm  rain events  (when rainwater  passes  through the 
snowpack and drains  away from  the  pillow,  and  measured precipitation exceeds  ΔSWE).   
Snowmelt  and/or  sublimation also may decrease  SWE.   Wind redistribution of  snow  can either  
augment  or  decrease  SWE,  but  this  effect  is  slight  because  most  California  snow  pillows  are  in  
sheltered locations  (Farnes  1967).   In summary,  snow  pillows  are  a  reliable  measure  of  high-
elevation snowfall,  and they do not  suffer  from  the  undercatch that  standard precipitation gauges 
suffer  in  such environments  (Yang et  al. 2005) .   However,  because  Sierra  snowpacks  are  
typically warm  and isothermal,  most  rain falling  on a  snow  pillow  is  not  retained and therefore,  
not  measured (Lundquist  et  al. 2008) .   All  snow  pillow  data  were  quality  controlled  as  described 
in L15.  

2.4 Bayesian precipitation estimates   

In order  to provide  another  independent  estimate  against  which to validate  the  modeled 
precipitation,  we  use  daily streamflow  observations  and a  method for  inferring basin-mean 
precipitation given streamflow. S treamflow  observations  provide  an indirect  representation of  
precipitation patterns, a s  each basin integrates  spatially-distributed precipitation inputs  into the  
streamflow  response.  

Of  the  56  stream  gauges  identified  by H16, w hich measure  streamflow  from  basins  that  are  
largely  free  of  upstream  diversions  and flow  regulation,  we  use  a  subset  of  31  with data  in  
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WY2008.  We  then apply  a  Bayesian methodology (Henn et  al. 2015)   to infer  the  probability 
distribution of  the  basin-mean precipitation total  for  WY2008, gi ven the  observed streamflow  in  
each basin.  The  methodology  uses  lumped hydrologic  models  forced by  daily precipitation time  
series,  which are  scaled using multiplier  parameters. These  parameters,  along  with the  other  
hydrologic  model  parameters,  are  then inferred in Bayesian model  calibration to streamflow  
observations.  Thus,  the  inferred precipitation  from  streamflow,  Pinferred, i s  the  WY2008  
precipitation total  that  yields  the  best  match to observed streamflow  in  each basin.  Pinferred  is  
given as  an ensemble  resulting from  using six  different  hydrologic  model  structures,  in  order  to 
represent  the  uncertainty associated with this  approach.  While  the  uncertainty of  Pinferred  is  
substantial,  we  note  that  streamflow  represents  a  spatially-integrated response  to precipitation,  
unlike  precipitation gauge-based datasets  that  are  derived from  point  measurements.  In  areas  of  
high spatial  variability  of  precipitation and  sparse  gauge  networks,  streamflow-derived Pinferred  
may capture  aspects  of  this  variability missed by gauge-based datasets.  For  more  information  on 
the  methodology used to  infer  precipitation  from  streamflow,  see  Henn et  al. ( 2015,  2016a).   

3 Differences  in  frozen  and  total  precipitation  across  datasets  

3.1 Snow  pillow  comparisons  

3.1.1  Differences  in annual  frozen  precipitation  

In this  section, w e  examine  how  frozen precipitation varies  across  the  different  datasets,  and how  
each dataset’s  frozen precipitation compares  with  that  of  the  snow  pillows  and the  multi-product  
mean.  We  begin by  comparing  the  gridded  datasets  to the  multi-product  mean (Figs. 2  and 3);  the  
multi-product  mean is  the  average  of  the  six  WRF  and four  gridded datasets  (the  Newman 
median frozen precipitation is  used). W Y2008 had  ~13%  lower-than-average  snow  totals  
compared with the  20-year  average  across  the  pillows  of  L15,  and  ~30%  lower-than-average  
precipitation totals  for  the  Sierra  Nevada  in the  Sierra  Nevada  8-station index  (Ralph et  al. 2016) ;  
a  larger-than-average  percentage  of  WY2008’s  precipitation fell  during  westerly wind situations  
(L15). T here  are  stark differences  in where  the  gridded datasets  and WRF  tend to put  the  largest  
frozen precipitation  amounts:  WRF  places  more  precipitation on the  windward slope  of  the  
Sierra  Nevada, j ust  east  of  the  1000 m  terrain contour,  with  less  precipitation than  the  multi-
product  mean east  of  the  crest  and  in the  foothills.  This  tendency is  most  pronounced  in the  
WSM6 simulations,  which have  frozen precipitation amounts  400 to  500 mm  larger  on the  
western slope  than the  multi-product  mean,  and  least  pronounced in EThom, f ollowed by  
NThom,  and  EMorr, r espectively.  All  four  gridded  datasets  have  a  nearly inverse  pattern,  with  
less  precipitation along the  windward  slope  (up  to 300-400 mm  less  in Livneh and Hamlet)  and 
more  precipitation  along the  foothills  and  east  of  the  crest  (largest  in  Daymet  and Newman).   

Individual  comparison of  frozen precipitation  at  the  nearest  gridpoint  to each snow  pillow  
observation (Fig. 4   and  Fig.  5)  reveals  general  biases  of  the  individual  datasets.  When scattered 
against  the  snow  pillow  water  year  totals  (Fig. 4 a), t he  reduced precipitation along  the  windward  
slope  in the  gridded  datasets  shows  up as  a  general  tendency for  these  datasets  to fall  below  the  
1:1 line, e specially at  pillow  locations  with greater  than 800 mm  of  snow  in WY2008. T he  bias  
of  the  WRF  simulations  depends  strongly  on the  microphysics  scheme:  The  two WRF  
simulations  with WSM6 microphysics  have  a  large  wet  bias  across  much of  the  region  (10-20%,  
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on average,  and up  to  50-60%  at  a  few  locations).  The  other  four  WRF  simulations  with  the  
double-moment  microphysics  schemes  generally fall  between the  gridded  datasets  and the  
WSM6 simulations,  with frozen precipitation  amounts  that  are  frequently more  in  line  with  that  
observed at  the  snow  pillows, a lthough large  biases  still  exist  at  some  locations.  These  overall  
tendencies  are  reflected by summary  statistics  of  the  differences  of  the  datasets’  total  WY2008  
frozen precipitation  with the  snow  pillow  observations  (Table  2). T he  WRF  simulations  with 
double-moment  microphysics  schemes  overall  have  mean and median differences  that  are  closer  
to zero than  the  other  datasets,  with the  smallest  median differences  in EThom,  NThom, a nd 
EMorr, r espectively. T he  two  WRF  simulations  with WSM6 microphysics  have  mean and 
median differences  that  are  greater  than 100  mm  or  ~13%  of  gauge-median total  precipitation, 
reflecting their  wet  bias. T he  four  gridded datasets  all  have  mean and median  differences  that  are  
negative,  with Daymet  and the  Newman datasets  having differences  about  half  as  large  as  the  
differences  of  Livneh and  Hamlet. T he  standard deviations  of  the  differences  are  rather  large  
(greater  than  200 mm, or ~26%  of  gauge-median total  precipitation)  for  all  datasets,  indicating  
the  large  variation  of  comparisons  with individual  snow  pillows.  

Linear  fits  of  each dataset  with the  snow  pillow  data  (Fig. 4b)   make  clear  a  few  additional  
details.  First, t he  linear  fits  for  all  of  the  datasets  tend to have  a  slope  less  than 1, i ndicating  that  
they do not  have  a  large  enough difference  between the  ‘dry’  pillows  and ‘wet’  pillows  (i.e.,  
those  pillows  with a  small  and  large  annual  total  frozen precipitation, r espectively). T his  
characteristic  is  generally worse  in the  gridded  datasets  –  particularly Daymet  –  than in  the  WRF  
simulations.  The  two  WSM6 WRF  simulations,  despite  their  large  wet  bias,  seem  to  suffer  the  
least  of  all  datasets  from  this  effect. S ome  of  the  inability to represent  wet  versus  dry  pillows  
could be  due  to  spatial  variability  occurring  on scales  smaller  than the  6  km  grid, but   the  variance  
of  this  across  datasets  suggests  some  datasets  are  missing the  general  areas  of  heaviest  and 
lightest  precipitation. T he  linear  fits  also reveal  a  systematic  difference  between the  WRF  
simulations  with different  lateral  boundary conditions  not  easily visible  in the  scatterplot:  The  
NARR-forced runs  tend to  be  slightly  wetter  than  their  ERA-I-forced counterparts, a nd have a 
steeper  (thus  more  in  agreement  with  the  snow  pillows)  slope,  with more  frozen precipitation  at  
the  stations  with more  observed snowfall,  although  this  effect  is  clearly second-order  when 
compared with the  effects  of  microphysics.  

To tease  out  the  impact  terrain forcing has  on  the  distribution of  frozen precipitation  and errors  in 
the  downscaled and gridded datasets,  Fig.  5  shows  the  snow  pillow  precipitation  totals  along  
with percent  differences  in each datasets’  frozen precipitation plotted as  a  function of  zonal  
terrain gradient. T he  zonal  terrain gradient  in  longitude/latitude  space  is  shown for  reference  in  
Fig.  5a,  and has  been calculated from  the  WRF  terrain,  smoothed by  a  7 gridpoint  filter  to  focus  
on larger-scale  terrain features, a nd multiplied by  -1 to facilitate  the  plotting:  Eastward-directed 
gradients,  i.e., t hose  on the  windward or  west-facing slope,  are  thus  negative  values  in Fig. 5 a 
and appear  on the  left  half  of  each panel  Fig. 5b- l  (in agreement  with  the  gradients  in  
longitude/latitude  space),  with  westward-directed gradients  on the  right  half  of  each panel. I n the  
northern Sierra  Nevada, t he  snow  pillows  generally have  considerably more  precipitation on  the  
windward slope  than in  the  lee, w ith annual  frozen  precipitation totals  greater  than  800 mm  
where  the  gradient  is  sloping up to the  east  and less  than 800 mm  where  it  is  sloping up  to the  
west.  All  6 WRF  downscalings  tend to overdo  this  windward/leeside  contrast,  with slight  
(double-moment  runs)  to  moderate  (WSM6 runs)  positive  biases  at  the  windward locations  
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ranging in magnitude  from  near  0 to  60%,  and dry leeside  biases  of  up to 60%  in  all  6  
simulations.  The  windward/leeside  contrast  in the  southern Sierra  is  generally smaller  in the  
snow  pillow  totals,  and  the  WRF  simulations  similarly do not  show  as  consistent  of  a  pattern in  
their  biases  in this  region.  Unlike  the  WRF  simulations,  the  biases  in the  gridded datasets  do not  
seem  to have  any strong relationship with terrain  gradient.  

3.1.2  Differences  in event  and daily  frozen precipitation  

Our  comparison thus  far  has  focused on  differences  in total  WY2008  frozen precipitation, but   
now  we  turn  our  attention to  biases  in daily precipitation,  to  get  a  sense  for  how  these  biases  
evolve  over  the  water  year. T o  do this,  we  examined cumulative  traces  of  daily snow  pillow  and 
dataset  snow  pillow  precipitation at  each pillow  (not  shown). The  behavior  of  the  datasets’  
frozen precipitation  with respect  to the  snow  pillows  varied substantially  from  pillow  to  pillow, 
with snow  at  some  pillows  being  very over- or  under-estimated by all  datasets, well-represented 
in WRF  but  underestimated by gridded  datasets,  or  well-represented by most  datasets.  These  
large  differences  at  different  pillows  were  not  apparent  when all  pillows  were  lumped  together  
for  error  statistics  calculation.  Thus, w e  subjectively divided the  snow  pillows  into four  groups,  
based on the  general  characteristics  of  the  amount  of  snow  pillow  frozen precipitation with  
respect  to that  of  the  other  datasets.  Our  four  groups  are:  

Group A  (21%  of  pillows):  snow  pillow  and WRF  >  at  least  2 gridded datasets    

Group B  (25%  of  pillows):  snow  pillow  >  8 or  more  datasets  

Group C  (28%  of  pillows):  snow  pillow  near  center  of  all  datasets  

Group D  (25%  of  pillows):  snow  pillow  <  8 or  more  datasets  

A  list  of  which snow  pillows  are  in each group is  provided in Table  3,  and a  map of  their  
distribution is  included on  Fig.  1b. S ee  H16a  for  a  complete  list  and map of  watersheds.  Group  A  
pillows  largely run  down the  crest  of  the  central  Sierra,  with  a  secondary cluster  south  of  the  
Merced watershed.  Group B  is  mostly  in the  lee  of  the  northern  Sierra  and at  a  few  of  the  lowest-
elevation,  windward side  locations. G roup  C  has  a  cluster  of  locations  across  the  Tuolumne  and 
Cherry-Eleanor  watersheds,  with additional  locations  scattered across  the  entire  region.   Group D  
is  largely confined to the  southern Sierra.  

Example  cumulative  frozen precipitation  traces  from  each of  the  four  groups  are  shown in  Fig. 6 . 
These  traces  are  representative  of  their  individual  groups,  although the  ‘best’  and ‘worst’  datasets  
at  each pillow  vary  substantially.  All  four  pillows  shown,  and 92%  of  all  pillows  (not  shown),  
receive  more  than 50%  of  their  total  WY2008 precipitation during  three, 3-11 day periods:  These  
three  events  were  identified  in L15  as  coincident  ‘missed storms’  –  i.e., unde restimated snow  
amounts  –  in Hamlet  and Livneh. T hat  such a  large  fraction of  WY2008 snow  fell  during 3  short  
periods  is  consistent  with previous  work  showing that  a  substantial  portion of  annual  California  
precipitation tends  to fall  during a  few  synoptic-scale  events,  often containing  atmospheric  rivers  
(L15;  Dettinger  et  al. 2011) :  Dettinger  et  al. 2011  show  that  50%  of  each year’s  precipitation  
accumulates  over  less  than 15 days  in the  Northern  Sierra  and less  that  10  days  in the  Southern 
Sierra, on  average. A lthough each dataset  has  small  errors  during  most  of  the  precipitation  
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events,  the  errors  are  larger  for  the  largest  three  events,  and in many cases  large  
under/overestimation of  precipitation  in one  event  leads  to the  bulk of  the  WY  disagreement. F ig.  
6  also reveals  that  the  timing of  the  precipitation is  very similar  in all  datasets.  This  agreement  is  
not  surprising for  the  gridded  datasets,  which rely on gauge  data.  However,  the  WRF  
simulations,  which are  run in  a  regional  climate  framework (i.e., i nitialized  in July 2007  and then  
integrated continuously from  then  through  Oct.  1, 2008)   could potentially  diverge  in their  
evolution of  synoptic  features  after  these  features  enter  the  edges  of  the  outer  domain.  Since  the  
timing agrees  so well  across  the  simulations  and  with observations,  the  domain configuration and  
nudging used on the  outermost  domain  are  providing strong constraints  and keeping  the  
simulations  in agreement  with  the  reanalysis  lateral  boundary conditions.  Finally, F ig. 6   reveals  
information about  the  uncertainty  estimate  from  the  Newman dataset:  The  interquartile  range  
(IQR)  of  the  Newman precipitation at  3 of  the  4 pillows  shown exceeds  the  total  range  of  the  10  
frozen precipitation  estimates  and observed snowfall,  and this  is  true  for  86%  of  all  pillows.   

The  question remains  as  to  whether  each datasets’  biases  are  consistent  for  each storm  leading to 
the  total  precipitation,  or  rather, i f  individual  storm  biases  tend to vary  in sign and  cancel  out  
over  the  WY. W e  address  this  question using histograms  of  errors  for  each group (Fig. 7)   and 
boxplots  of  the  errors  for  the  three  largest  storms  periods  for  each group (Fig.  8).   For  all  datasets  
in all  groups,  the  histogram  peaks  lie  between -10 and 0 mm,  indicating  a  general  tendency for  
all  datasets  to underestimate  small  precipitation  events.  However,  the  majority  of  error  in  WY 
total  frozen precipitation is  driven by  larger  events,  which impact  the  skewness  and width of  the  
histograms,  and show  up more  clearly  in boxplots  from  the  three  largest  storms  (Fig.  8).  

Biases  in group B  in all  10 datasets  seem  to be  fairly systematic,  with the  histograms  of  daily 
errors  and the  errors  for  the  three  largest  storms  lying mostly below  zero,  indicating  that  all  the  
datasets  have  a  tendency to underestimate  frozen precipitation at  these  locations. I n contrast,  
biases  in group D  are  quite  skewed,  with  a  heavy positive  tail  (Fig. 7) , a nd the  overprediction  at  
these  pillows  is  mainly due  to  overprediction  of  frozen precipitation during  the  3  big  storm  
events  of  the  WY  (Fig. 8 );  the  errors  in  this  group are  a  bit  worse  in the  WRF  simulations  than 
the  gridded datasets,  and are  largest  for  the  first  storm  period,  especially in  the  NARR-forced 
simulations. The  histograms  and  boxplots  for  group A  and, t o a  lesser  degree  group C,  illustrate  
the  tendency for  all  the  gridded datasets  to underestimate  precipitation  in the  central  Sierra  
Nevada,  and the  daily  error  statistics  suggest  this  is  largely a  systematic  problem  for  these  two 
groups  of  stations, w ith the  majority  of  the  histogram  probability  lying very  close  to or  below  
zero for  all  four  datasets  in these  groups.  The  difference  between group A  and group  C  in the  
gridded datasets  is  largely a  result  of  Storm  1:  in group A  the  boxes  and most  of  the  whiskers  for  
all  three  storms  are  consistently below  zero, a nd the  net  result  is  large  underestimation of  WY  
total  frozen precipitation by  the  gridded datasets.  In group C  the  gridded  datasets’  Storm  1  errors  
are  more  consistently positive, t hus  compensating for  the  general  underestimation  and  resulting 
in smaller  biases  in WY  total  frozen  precipitation.  In both groups  A  and  C,  the  biases  in all  6  
WRF  simulations  are  more  centered  around zero  than those  of  the  gridded datasets,  although  in 
group C  there  are  more  large  positive  outliers. T he  positive  WY  total  biases  in the  two WSM6  
simulations  appear  as  a  slight  shift  in the  histograms  (Fig. 7 ) and storm  total  barplots  (Fig.  8).  
The  storm  total  barplots  also reveal  large  differences  in biases  from  storm  to storm  in  the  NARR-
forced simulations, with  Storm  1  showing very large  positive  errors  in Groups  A,  C, a nd D  for  all  
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microphysics  parameterizations;  the  ERA-Interim-forced WRF  biases  are  more  consistent  from  
storm  to storm.  

These  statistics  for  the  daily  and storm-total  errors  suggest  that  error  outliers  contribute  strongly  
to the  overall  biases  for  each ensemble  member,  and in some  cases  these  biases  can vary 
significantly from  one  storm  to another. T his  lack of  a  more  systematic  bias  possibly suggests  
that  case  studies  of  individual  storm  events  of  microphysics  scheme  performance  may sometimes  
lead to incorrect  conclusions  about  their  overall  tendencies,  since  the  biases  are  reflected in the  
higher-order  statistics  rather  than being  systematic.  California’s  tendency to  receive  most  of  each 
water  year’s  precipitation  in a  few  concentrated storm  periods  means  that  these  errors  in  
individual  storms  can strongly  influence  the  water  year  biases.  In addition,  the  different  behavior  
of  the  daily  errors  in the  different  groups, which cluster  in localized regions  (Fig.  1), m ean that  
bias  tendencies  can be  highly variable  spatially;  thus  conclusions  about  overall  bias  need to  
either  take  this  spatial  variability into  account  or  be  drawn for  rather  large  areas.  

3.2 Comparison to  Bayesian estimated precipitation  

We  now  turn  our  attention  to  a  comparison of  the  datasets’  WY2008 precipitation with Pinferred  
(Section 2.4). A lthough Pinferred  is  limited  temporally to WY  total  precipitation  and spatially to  
basin-mean precipitation amounts,  it  provides  an independent  verification when combined  with 
the  snow  pillow  dataset  used in the  previous  section.  We  begin  this  comparison with  maps  of  the  
differences  between Pinferred  and basin-mean precipitation for  each dataset  (Fig.  9).  Because  
Pinferred  includes  an uncertainty estimate, w e  use  this  estimate  in our  comparison,  and  rather  than 
showing absolute  or  percentage-wise  difference  maps,  we  categorically  compare  with  Pinferred. 
The  precipitation  estimates  for  a  large  number  of  basins  for  all  datasets  fall  within the  IQR  of  
Pinferred. H owever, f or  the  differences  falling  outside  this  uncertainty range,  we  see  some  patterns  
quite  similar  to  those  we  saw  with the  snow  pillow  comparisons.  For  instance,  in  the  central  
Sierra, t he  Yosemite-area watersheds  of  the  Tuolumne  River  and/or  Cherry and  Eleanor  Creeks  
are  generally drier  than  Pinferred  in the  four  gridded datasets. The  pillows  in this  region are  mostly 
Group C  (i.e.,  snow  pillow  near  center  of  all  datasets);  however, f or  most  of  the  pillows  in  these  
regions,  at  least  2  of  the  gridded  datasets  greatly underestimated frozen precipitation  (not  
shown),  and Hamlet  and  Daymet  both  underestimate  frozen precipitation at  more  pillows  than 
Livneh and Newman,  consistent  with Pinferred. In  addition,  the  two WSM6 WRF  runs  are  wetter  
than Pinferred  in several  basins  across  the  region,  similar  to  the  snow  pillow  comparisons.  The  
North Fork  of  the  American  River, i n the  northern  Sierra, i s  consistently underestimated by the  
gridded datasets  and also tends  to be  underestimated by the  WRF  simulations,  although  in WRF  
the  underestimation is  within  the  range  of  uncertainty for  all  but  one  ensemble  member.  Many of  
the  WRF  simulations  and gridded  datasets  overestimate  precipitation in  several  of  the  smaller  
watersheds  throughout  the  region,  in  particular,  the  San Joaquin basins  of  Pitman, B ear,  and  
Bishop Creeks,  and the  Mokelumne  basins;  the  pattern of  which watersheds  are  overestimated is  
more  consistent  across  the  WRF  simulations  than across  the  gridded datasets.  Finally,  in  the  
southern Sierra, t he  Kern  River  watershed precipitation is  overestimated in all  WRF  simulations  
but  those  using Thompson microphysics,  as  well  as  in Daymet,  consistent  with  the  differences  
against  snow  pillows  seen earlier  in Fig. 5.   
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We see similar  correspondence  to the  snow  pillow  comparisons  when the  datasets’  precipitation 
is  scattered against  Pinferred  (Fig. 10) ,  although  as  we  saw  with the  mapped differences,  many  of  
the  datasets’  estimates  fall  within the  IQR  of  Pinferred.  Displayed in  this  way it  becomes  clear  that  
all  datasets  tend to overestimate  basin-mean precipitation in watersheds  with the  smallest  
amounts  of  WY2008 precipitation inferred from  streamflow. T he  WSM6 simulations  
systematically overestimate  precipitation in many  watersheds,  whereas  the  Morrison and 
Thompson simulations  more  consistently fall  within the  IQR  of  Pinferred. T he  NARR-driven 
simulations  are  consistently wetter  than the  ERA  Interim-driven simulations,  although  again, t his  
effect  is  secondary compared to  the  impact  of  microphysics  on total  precipitation. T he  gridded  
datasets  consistently underestimate  precipitation in  the  wettest  watersheds;  this  underestimation,  
when combined with the  overestimation of  drier  watersheds,  is  reflected in a  flatter  slope  of  
linear  fits  against  Pinferred  (Fig.  10b)  similar  to that  seen in the  snow  pillow  comparisons.  All  the  
WRF  simulations  do a  consistently better  job  in  distinguishing wet  and dry  basins;  curiously,  
despite  their  consistent  wet  bias  and consistent  with the  snow  pillow  results,  the  slope  of  the  
WSM6 simulations  best  matches  that  seen in Pinferred.  

4 Summary and  Discussion   

In this  manuscript, w e  explore  the  uncertainties  during WY2008  in  the  Sierra  Nevada  of  
California’s  high-elevation precipitation in  10 datasets:  six  WRF  regional  climate  downscalings  
with differing lateral  boundary  conditions  and microphysical  parameterizations,  and four  gauge-
based,  interpolation-gridded precipitation  datasets:  Livneh,  Hamlet, D aymet, a nd Newman.  We  
first  compare  frozen precipitation from  these  10 datasets  with positive  daily changes  in snow  
water  equivalent  from  a  network of  95 snow  pillows  across  the  Sierra  Nevada, t hen follow  this  
with a  comparison of  total  precipitation  with a  precipitation dataset  inferred  from  stream  gauges  
using a  Bayesian inference  method.  Most  of  the  manuscript  focuses  on comparisons  of  WY  total  
precipitation,  but  we  also compare  daily error  statistics  with the  snow  pillow  data.  
During WY2008, t he  gridded datasets,  especially Livneh and Hamlet,  tend  to underestimate  
frozen precipitation  on the  windward slope  of  the  Sierra  Nevada,  particularly  in the  vicinity of  
Yosemite  National  Park  (Fig. 1) . T he  WRF  simulations  consistently place  more  precipitation  on 
the  windward slope  than the  gridded  datasets,  although the  amount  of  precipitation along  the  
windward slope  depends  strongly on microphysical  parameterization:  the  WRF  simulations  with  
single-moment  microphysics  tend to overestimate  precipitation along the  windward slope,  
whereas  those  with double-moment  microphysics  tend to better  agree  with  the  snow  pillows  at  a  
large  proportion of  the  snow  pillow  locations. W RF  simulations  with NARR  as  lateral  boundary 
conditions  are  slightly wetter  than those  with  ERA  Interim  boundary  conditions,  but  this  effect  is  
second order  compared to  microphysical  differences.  
All  six  WRF  simulations  somewhat  overestimate  the  windward/leeside  precipitation contrast  in  
the  northern  Sierra  Nevada. T his  problem  is  more  pronounced in the  single-moment  simulations,  
which produce  significantly more  graupel  than the  double-moment  schemes  (not  shown,  e.g.,  see  
Jankov et  al.  2009), s uggesting it  could be  partially  due  to too-efficient  fallout  of  hydrometeors  
on the  windward  side  of  the  Sierra  Nevada.  However,  since  the  issue  appears  in all  six  WRF  
simulations  irrespective  of  microphysics,  another  factor  is  probably  also contributing,  and we  
speculate  that  this  may be  due  to insufficient  embedded convection in these  simulations  during  
post-cold-frontal  periods:  Since  embedded convection during  post-cold-frontal  storms  tends  to 
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result in an increase in leeside snow (Geerts et al. 2011), if these simulations have too little 
embedded convection (due perhaps to their horizontal grid spacing) it could lead to not enough 
precipitation being lofted into the lee. This hypothesis is also consistent with the location of this 
bias in the northern Sierra Nevada, since the trajectory of most wintertime extratropical cyclones 
hitting California means the northern Sierra Nevada spends more time in the cold sector than the 
southern Sierra Nevada. The position of the most prominent ‘leeside’ underestimation east of 
Lake Tahoe also raises the possibility that an additional issue is insufficient resolution of the 
very narrow Carson range to the east of Lake Tahoe along with potential lake effects. 

Daily errors were investigated by sorting the pillows into four different groups based on how 
much snow pillow precipitation fell with respect to the other datasets; three of these four groups 
clustered in highly localized regions. Daily and storm-total error statistics for the gridded 
datasets were fairly consistently dry-biased, with outliers determining the overall site biases; 
WRF’s biases were more centered around zero, and similarly, outliers contributed to the overall 
tendencies for the different schemes. All 10 datasets underestimated small precipitation events. 
WRF’s zero-centered daily biases and varying storm-total biases suggest case studies of 
microphysical bias need to be interpreted carefully, since individual events may not sample the 
distribution adequately to capture the error distribution. In addition, geographical tendencies of 
biases varied widely with topographic characteristics. Thus conclusions about region-mean bias 
need to be drawn for rather large areas, although region-mean bias is likely not adequate to 
understand the dynamics leading to the biases. 

Finally, the WRF simulations, in particular those with single-moment microphysics, better 
distinguish wet-versus-dry pillows and watersheds than the gridded estimates. Even though the 
WRF simulations with single-moment microphysics have a large wet bias, this wet bias was 
fairly systematic across the region. The double-moment WRF simulations were less biased 
overall, but the differences between wet and dry pillows/watersheds were not as large as 
observed in these simulations. The gridded datasets have the least contrast between wet and dry 
pillows and watersheds, with positive biases at dry pillows and watersheds and large negative 
biases at the wettest pillows and watersheds; this result was also seen in H16. The differences 
between the gridded datasets and WRF simulations in this respect are likely caused in part by 
limitations of the statistical gridding methodologies used by the gridded datasets: These datasets 
use linear regression techniques based on climatology to extrapolate gauge precipitation amounts 
to regions without measurements, and thus embed these climatological relationships in their 
estimates. When precipitation patterns differ from climatology, these gridded datasets would 
tend toward climatology, and that introduces biases; in general, any statistical interpolation 
technique will likely produce a smoother solution than the underlying data. All 10 datasets 
somewhat underestimated the wet and dry contrast, and this consistent underestimation may be 
related to small-scale terrain features unrepresented by the 6km grid (Minder et al. 2008). More 
work should be done to understand whether this wet-versus-dry bias is systematic across 
multiple water years. Further, until this issue is better understood, uncertainty in precipitation 
should be explicitly considered when conducting research that uses precipitation as an input 
(e.g., hydrological or ecological science). The reason for better wet-versus-dry ratios in the 
single-moment than double-moment WRF simulations is unclear, and will require an in-depth 
investigation of storm dynamics and cloud microphysical properties, which is beyond the scope 
of the present manuscript. 
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The  present  study found  systematic  differences  in  the  error  statistics  of  WRF  simulations  based 
on microphysical  scheme  sophistication,  and also between these  WRF  dynamical  downscalings  
and gridded estimates  of  precipitation, w ith double-moment  microphysics  WRF  simulations  
outperforming  both single-moment  WRF  simulations  and the  gridded  datasets  in most  respects  in 
the  Sierra  Nevada. We  highlight  three  significant  results  of  this  manuscript:  1)  Many model  
evaluations  use  PRISM-based gridded datasets  as  truth;  had we  taken this  approach our  
conclusion would be  that  all  the  WRF  datasets  have  a  wet  bias,  which  the  comparisons  to  snow  
pillows  and Pinferred  show  is  not  the  case.  2)  Our  investigation of  both  water  year  total  and  single  
storm  precipitation biases  revealed that  the  water  year  total  biases  were  in some  cases  quite  
dependent  on biases  from  one  major  water  year  storm:   Case  studies  of  model  configuration 
performed for  individual  storm  events  could  lead to incorrect  conclusions  about  the  model’s  
overall  tendencies,  since  precipitation  biases  are  reflected in the  higher-order  statistics  rather  
than being systematic.  3)  Our  focus  both Sierra-wide  and at  smaller  scales  (e.g., w atershed scale)  
reveals  that  very different  biases  can exist  at  highly localized scales.  These  three  results  provide  
guidance  for  future  research,  suggesting care  be  taken  regarding  spatial  and  temporal  scales  and 
with  the  “observations”  used  for  model  evaluation:  Without  this  care,  studies  may reach incorrect  
conclusions  about  model  performance  and  where  to focus  future  model  development.  Our  results  
for  the  Sierra  Nevada  should be  largely  transferrable  to other  mid-latitude  mountainous  regions  
that  receive  most  of  their  precipitation  from  orographically enhanced synoptic  scale  events,  with 
that  caveat  that  the  performance  of  the  gauge-based datasets  is  likely sensitive  to gauge  density,  
and that  California’s  tendency to receive  most  precipitation in a  few  large  events  per  year  
increases  the  risk that  individual  case  studies  may not  represent  overall  biases.  

Our  results  are  limited by  the  single  water  year  of  available  WRF  output. F urther,  we  emphasize  
that  the  water  year  presented was  particularly  problematic  for  gridded datasets  (L15);  further  
work is  needed  to examine  whether  the  patterns  in biases  that  we  show  here  are  consistent  during  
water  years  with different  conditions,  particularly years  with more  extreme  precipitation,  and  to 
investigate  the  dynamic  and thermodynamic  causes  for  interannual  changes  in orographic  
precipitation gradient.  Finally,  although  using WRF  to downscale  reanalysis  data  is  shown in this  
manuscript  to improve  over  gridded datasets  during certain water  years,  it  is  a  computationally  
expensive  option,  and may  not  always  be  feasible  for  all  applications.  Two  possible  and 
promising alternative  approaches  are  hybrid techniques  that  combine  statistical  and dynamical  
downscaling approaches  (e.g., S un et  al. 2015)   or  simpler  and less  computationally demanding  
dynamical  models,  such as  the  Intermediate  Complexity Atmospheric  Research Model  (Gutmann 
et  al.  2016), a lthough more  work  is  needed in  the  development  and testing of  such tools. T hese  
approaches  could also potentially be  used to  improve  gauge-based gridded datasets,  
incorporating dynamical  information  to  improve  upon the  weaknesses  of  purely statistical  and 
elevation-based gridding techniques.  
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751 Figure  1. (a)  WRF  terrain (m)  and  extent  of  18  km  (edge  of  color  fill)  and 6  km  (red  outline)  
domains.  Green line  shows  focus  area  of  manuscript.  (b)  2-min USGS  terrain (black contours  at  
0,  1000,  and 3000m), w atershed extent  for  stream  gauges  (purple  outlines  and green color  fill),  
and locations  of  snow  pillows  (colored markers)  for  green-outlined region  of  (a).  Color  and 
shape  of  snow  pillow  markers  indicate  their  group  in section 3:  Group  A, bl ue  circles;  Group B,  
green triangles;  Group  C, r ed diamonds;  Group D,  orange  squares.  Letters  A,  B, C ,  and  D  
indicate  locations  of  example  pillows.  Numbers  1-5 indicate  watersheds  highlighted in  the  text,  
with names  given in upper  right.  

Figure  2. WY2008 total  (mm):  a)  snow  pillow  observed snowfall,  b)  multi-product  mean frozen 
precipitation,  c)  difference  of  multi-product  mean frozen precipitation and  snow  pillow  observed 
snowfall,  d)  gridded dataset  mean frozen precipitation,  e)  WRF  mean frozen precipitation, f )  
gridded dataset  difference  from  multi-product  mean,  and g)  WRF  difference  from  multi-product  
mean.  WRF  amounts  (e,  g)  are  the  sum  of  snow  and graupel;  gridded datasets  (d, f )  are  the  sum  
of  precipitation  on all  days  when Tmin<0 ℃  2-minute  terrain is  plotted every  1000m  starting  at  
0m.  

Figure  3: Precipitation  difference  of  individual  dataset  WY2008 total  frozen precipitation from  
multi-product  mean (Fig. 2a ;  mm). W RF  amounts  (a,  b,  c, f ,  g,  h)  are  the  sum  of  snow  and 
graupel;  gridded  datasets  (d,  e, I ,  j)  are  the  sum  of  precipitation on all  days  when Tmin<0 ℃. 2-
minute  terrain  is  plotted  at  0, 1000, a  nd 3000  m.   

Figure  4. (a)  Scatterplot  of  frozen  precipitation versus  snow  pillow  data  at  nearest  gridpoint  
(mm). b)   Linear  regressions  for  scatterplots  of  (a).  

Figure  5. a)  Meridional  gradient  of  smoothed terrain (color  fill, m   6km-1), t errain from  WRF  
simulation (black contours, e very 1000m), a nd locations  of  snow  pillows  (black dots). b)   Snow  
pillow  water  year  total  snow  (mm)  versus  smoothed zonal  terrain  gradient  (x-axis,  as  in (a))  and 
latitude  (y-axis).  (c-l)  As  in (b), but   percent  difference  between frozen precipitation  and snow  
pillow  snow  (%).   

Figure  6. Cumulative  traces  of  daily snow  pillow  snow  and frozen  precipitation for  examples  
from  each of  the  4 groups  of  snow  pillows  (A-D)  outlined in the  text.  Purple  and cyan arrows  
show  start  dates  of  ‘missed storms’  from  Lundquist  et  al. ( 2015)  in  Livneh and Hamlet  datasets,  
respectively.  Locations  of  example  pillows  are  shown with letters  in  Fig.  1b.  Group A  (21%  of  
pillows):  snow  pillow  and  WRF  >  at  least  2 gridded datasets;  group B  (25%  of  pillows):  snow  
pillow  >  8  or  more  datasets;  group C  (28%  of  pillows):  snow  pillow  near  center  of  all  datasets;  
group D  (25%  of  pillows):  snow  pillow  <  8  or  more  datasets.  

Figure  7. Histogram  of  errors  (gridded-snow  pillow)  of  smoothed daily ‘frozen’  precipitation  for  
each of  the  4  groups  of  snow  pillows  (A-D)  outlined in the  text,  on days  with  smoothed observed 
snow  >  5 mm. G roup  A  (21%  of  pillows):  snow  pillow  and WRF  >  at  least  2 gridded datasets;  
group B  (25%  of  pillows):  snow  pillow  >  8 or  more  datasets;  group C  (28%  of  pillows):  snow  
pillow  near  center  of  all  datasets;  group D  (25%  of  pillows):  snow  pillow  <  8  or  more  datasets.  
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Figure  8. Boxplots  of  errors  (gridded-snow  pillow)  of  ‘storm’  total  ‘frozen’  precipitation (mm)  
for  each of  the  4  groups  of  snow  pillows  (A-D)  outlined in the  text,  for  three  major  storm  periods  
highlighted with arrows  in Fig. 5:   Storm1:  Jan 3-8, 2008;   Storm  2:  Jan.  26  –  Feb.  5,  2008;  and 
Storm  3:  Feb. 19- 26,  2008.  Outliers  shown with red +  signs  are  +/- 2 standard deviations. G roup  
A  (21%  of  pillows):  snow  pillow  and WRF  >  at  least  2 gridded datasets;  group B  (25%  of  
pillows):  snow  pillow  >  8 or  more  datasets;  group C  (28%  of  pillows):  snow  pillow  near  center  
of  all  datasets;  group  D  (25%  of  pillows):  snow  pillow  <  8 or  more  datasets.  

Figure  9. (a)  Median basin-mean WY2008 Pinferred (mm). ( b-k)  Categorical  difference  of  
gridded dataset  basin-mean precipitation (P)  and Pinferred. C ategories  are:  1:P  <  min  Pinferred,  
2:  min Pinferred <  P  <  25th  %  Pinferred, 3:   25th  %  Pinferred <  P  <  50th  %  Pinferred, 4:   50th %  
Pinferred <  P  <  75th %  Pinferred,  5:  75th  %  Pinferred <  P  <  max  Pinferred,  6:  max  Pinferred <  
P.  Note  that  categories  3 and  4 are  within the  interquartile  range  of  uncertainty.  

Figure  10. (a)  Basin-mean precipitation (mm)  from  gridded datasets  (see  legend), a s  a  function  
of  Pinferred (black crosses).  Large  black crosses  show  median and gray  shading bounded by  
smaller  black crosses  show  interquartile  range  (IQR)  of  Pinferred. ( b)  Linear  fit  for  each dataset.  
Black solid line  shows  Bayesian median and gray shading bounded by black dashed lines  show  
IQR.  
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  Simulation name Summary 
 description 

   Resolution of lateral 
  boundary conditions 

(LBCs)  

   Compute hours per 
  30 days of 

   simulation (run on 
 120 CPUs) 

 E.Morr    ERA Interim LBCs 
and Morrison 
microphysics  

 ~80 km  ~4000 

E.Thom     ERA Interim LBCs 
and Thompson 
microphysics  

 ~80 km  ~4000 

 E.WSM6    ERA Interim LBCs 
and WSM6 

microphysics  

 ~80 km  ~3700 

 N.Morr   NARR LBCs and 
Morrison 

microphysics  

 ~38 km  ~4000 

 N.Thom   NARR LBCs and 
Thompson 

microphysics  

 ~38 km  ~4000 

 N.WSM6   NARR LBCs and 
WSM6 microphysics  

 ~38 km  ~3700 

   816 

Confidential manuscript submitted to Climate Dynamics 
813 

814 Table  1:  Details  of  the  WRF  simulations. R eferences  for  microphysics  schemes  and lateral  
boundary conditions  can be  found in  Section 2.1.  815 
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Dataset    Mean Difference 
 (mm) 

  Median Difference 
 (mm) 

  Standard Deviation 
   of Difference (mm) 

 E.Morr  -2.4  36.5  222.0 

E.Thom   -62.8  -16.6  210.4 

 E.WSM6  103.0  132.3  255.5 

 N.Morr  29.5  68.6  236.1 

 N.Thom  -22.9  19.0  221.0 

 N.WSM6  146.1  174.2  274.3 

 Livneh  -142.8  -111.1  259.2 

 Hamlet  -164.3  -141.1  222.1 

Daymet   -60.7  -47.7  227.7 

 Newman  -81.1  -59.0  215.6 
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817 Table  2: Mean,  median,  and standard  deviation of  differences  between total  WY2008 frozen 

precipitation for  each dataset  and the  snow  pillow  observations.  818 
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  Name  Elev.  Latitude  Longitude 
G 
r 
o 
u 
p 
 
A 
 
p
i 
l 
l 
o 
w 
 s 

  Agnew Pass  2880  37.728  -119.143 
  Bloods Creek  2195  38.45  -120.033 
   Caples Lake (DWR)  2438  38.71  -120.042 
  Gianelli Meadow  2560  38.205  -119.892 

  Green Mountain  2408  37.555  -119.238 
  Hagans Meadow  2438  38.853  -119.94 

  Chilkoot Meadow  2179  37.41  -119.49 
  Dana Meadows  2987  37.897  -119.257 

  Ebbetts Pass  2652  38.561  -119.808 
  Highland Meadow  2652  38.49  -119.805 
 Mud Lake  2408  38.615  -120.14 
 Poison Flat  2408  38.501  -119.631 

 Poison Ridge  2103  37.403  -119.52 
 Schneiders  2667  38.747  -120.068 

  Stanislaus Meadow  2362  38.5  -119.937 
    Squaw Valley Gold Coast  2499  39.194  -120.276 

 Van Vleck  2042  38.945  -120.305 
  Ward Creek 3  2057  39.137  -120.22 
   Echo Peak 5  2377  38.849  -120.079 

  Graveyard Meadow  2103  37.465  -119.29 
G 
r 
o 
u 
p 
 
B 
 
p
i 
l 
l 
o 
w 
 s 

  Alpha (SMUD)  2316  38.805  -120.215 
  Bucks Lake  1753  39.85  -121.242 

  Blue Canyon  1609  39.276  -120.708 
   Casa Vieja Meadows  2530  36.2  -118.268 

  Cottonwood Lakes  3094  36.483  -118.177 
  Dismal Swamp  2149  41.993  -120.165 

 Four Trees   1570  39.813  -121.321 
  Forni Ridge  2316  38.805  -120.213 
  Gem Pass  3277  37.78  -119.17 

  Heavenly Valley  2682  38.929  -119.917 
   Independence Lake (SCS)  2576  39.435  -120.322 

  Kettle Rock  2225  40.14  -120.715 
  Lobdell Lake  2804  38.44  -119.377 
  Monitor Pass  2545  38.67  -119.615 
  Marlette Lake  2438  39.173  -119.905 

    Mount Rose Ski Area  2713  39.326  -119.902 
 Pascoes  2789  35.967  -118.35 

 Quaking Aspen  2195  36.117  -118.54 
 Rattlesnake  1859  40.125  -121.043 

  Slate Creek  1737  41.045  -122.478 
  Snow Mountain  1814  40.778  -121.782 
   Upper Burnt Corral  2957  37.183  -118.937 

  Big Meadows (SCS)  2652  39.458  -119.946 
  Grizzly Ridge  2103  39.917  -120.645 

  Name  Elev.  Latitude  Longitude 
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823 Table  3.  Snow  pillows  in  each of  the  4  groups  of  Figs.  5 and 6.  Group A:  snow  pillow  and  WRF  
>  at  least  2 gridded datasets;   Group  B:  snow  pillow  >  8 or  more  datasets; Group C:  snow  pillow  
near  center  of  all  datasets;  Group D:  snow  pillow  <  8 or  more  datasets  
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o 

o 

G 
r 

u 
p 

C 

p
i 
l 
l 

w 
s 

Adin Mountain 1890 41.237 -120.792 
Blackcap Basin 3139 37.067 -118.77 
Chagoopa Plateau 3139 36.497 -118.442 
Central Sierra Snow Laboratory 2103 39.325 -120.367 
Deadman Creek 2819 38.332 -119.653 
Gin Flat 2149 37.767 -119.773 
Huntington Lake (USBR) 2134 37.228 -119.221 
Horse Meadow 2560 38.158 -119.662 
Independence Creek 1981 39.494 -120.293 
Kaiser Point 2804 37.3 -119.1 
Mammoth Pass (USBR) 2835 37.61 -119.033 
Pilot Peak (Dwr) 2073 39.786 -120.875 
Robbs Saddle 1798 38.912 -120.378 
Lower Relief Valley 2469 38.243 -119.758 
Slide Canyon 2804 38.092 -119.43 
Sonora Pass Bridge 2667 38.318 -119.601 
Tunnel Guard Station 2713 36.367 -118.288 
Volcanic Knob 3063 37.388 -118.903 
Cedar Pass 2164 41.583 -120.303 
Blue Lakes 2438 38.613 -119.931 
Black Springs 1981 38.375 -120.192 
Humbug 1981 40.115 -121.368 
Huysink 2012 39.282 -120.527 
Lower Kibbie Ridge 2042 38.032 -119.877 
Medicine Lake 2042 41.592 -121.61 
Paradise Meadow 2332 38.047 -119.67 
Ostrander Lake 2499 37.637 -119.55 

o 

G 
r 

u 
p 

D 

p
i 
l 
l 
o 
w 
s 

Beach Meadows 2332 36.127 -118.293 
Crabtree Meadow 3261 36.563 -118.345 
Giant Forest (USACE) 2027 36.562 -118.765 
Independence Camp 2134 39.454 -120.299 
Leavitt Meadows 2195 38.305 -119.552 
Robbs Powerhouse 1570 38.903 -120.375 
Rock Creek Lakes 3048 37.455 -118.743 
Rubicon Peak 2 2286 39.001 -120.14 
South Lake 2926 37.176 -118.562 
Sawmill 3109 37.162 -118.562 
Tahoe City Cross 2057 39.172 -120.154 
Truckee 2 1951 39.3 -120.194 
Virginia Lakes Ridge 2835 38.077 -119.234 
West Woodchuck Meadow 2774 37.03 -118.918 
Big Pine Creek 2987 37.128 -118.475 
Bishop Pass 3414 37.1 -118.557 
Mitchell Meadow 3018 36.737 -118.712 
Silver Lake 2164 38.678 -120.118 
Spratt Creek 1875 38.667 -119.818 
Tamarack Summit 2301 37.165 -119.2 
Tuolumne Meadows 2621 37.873 -119.35 
Upper Tyndall Creek 3475 36.65 -118.397 
Wet Meadows 2728 36.348 -118.572 
Gold Lake 2057 39.675 -120.615 
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x: Yosemite 
National Park 

Fig. 1: (a) WRF terrain (m) and extent of 18 km (edge of color fill) and 6 
km (red outline) domains. Green line shows focus area of manuscript. 
(b) 2-min USGS terrain (black contours at 0, 1000, and 3000m), 
watershed extent for stream gauges (purple outlines and green color 
fill), and locations of snow pillows (colored markers) for green-outlined 
region of (a). Color and shape of snow pillow markers indicate their 
group in section 3: Group A, blue circles; Group B, green triangles; 
Group C, red diamonds; Group D, orange squares. Letters A, B, C, and D 
indicate locations of example pillows. Numbers 1-5 indicate 
watersheds highlighted in the text, with names given in upper right. 
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Fig. 2: WY2008 total (mm): a) snow pillow observed snowfall, b) multi-product mean frozen 
precipitation, c) difference of multi-product mean frozen precipitation and snow pillow 
observed snowfall, d) gridded dataset mean frozen precipitation, e) WRF mean frozen 
precipitation, f) gridded dataset difference from multi-product mean, and g) WRF 
difference from multi-product mean. WRF amounts (e, g) are the sum of snow and graupel; 
gridded datasets (d, f) are the sum of precipitation on all days when Tmin<0 ℃ 2-minute 
terrain is plotted every 1000m starting at 0m. 



          
             

           
        

Fig. 3: Precipitation difference of individual dataset WY2008 total frozen precipitation from 
multi-product mean (Fig. 2a; mm). WRF amounts (a, b, c, f, g, h) are the sum of snow and 
graupel; gridded datasets (d, e, I, j) are the sum of precipitation on all days when Tmin<0 
℃. 2-minute terrain is plotted at 0, 1000, and 3000 m. 



      
   

 

Fig. 4: a) Scatterplot of frozen precipitation versus snow pillow 
data at nearest gridpoint (mm). b) Linear regressions for 
scatterplots of (a). 



             
              

               
         

Fig. 5: a) Meridional gradient of smoothed terrain (color fill, m 6km-1), terrain from WRF simulation (black 
contours, every 1000m), and locations of snow pillows (black dots). b) Snow pillow water year total snow 
(mm) versus smoothed zonal terrain gradient (x-axis, as in (a)) and latitude (y-axis). (c-l) As in (b), but 
percent difference between frozen precipitation and snow pillow snow (%). 



         
              
             

            
             

           
             

Fig. 6: Cumulative traces of daily snow pillow snow and frozen precipitation for examples 
from each of the 4 groups of snow pillows (A-D) outlined in the text. Purple and cyan arrows 
show start dates of ‘missed storms’ from Lundquist et al. (2015) in Livneh and Hamlet 
datasets, respectively. Locations of example pillows are shown with letters in Fig. 1b. Group 
A (21% of pillows): snow pillow and WRF > at least 2 gridded datasets; group B (25% of 
pillows): snow pillow > 8 or more datasets; group C (28% of pillows): snow pillow near 
center of all datasets; group D (25% of pillows): snow pillow < 8 or more datasets. 



        
          

            
          
            

            

Fig. 7: Histogram of errors (gridded-snow pillow) of smoothed daily ‘frozen’ 
precipitation for each of the 4 groups of snow pillows (A-D) outlined in the text, 
on days with smoothed observed snow > 5 mm. Group A (21% of pillows): snow 
pillow and WRF > at least 2 gridded datasets; group B (25% of pillows): snow 
pillow > 8 or more datasets; group C (28% of pillows): snow pillow near center of 
all datasets; group D (25% of pillows): snow pillow < 8 or more datasets. 



          
              

         
             

          
             

             

Fig. 8: Boxplots of errors (gridded-snow pillow) of ‘storm’ total ‘frozen’ precipitation (mm) 
for each of the 4 groups of snow pillows (A-D) outlined in the text, for three major storm 
periods highlighted with arrows in Fig. 5: Storm1: Jan 3-8, 2008; Storm 2: Jan. 26 – Feb. 5, 
2008; and Storm 3: Feb. 19-26, 2008. Outliers shown with red + signs are +/- 2 standard 
deviations. Group A (21% of pillows): snow pillow and WRF > at least 2 gridded datasets; 
group B (25% of pillows): snow pillow > 8 or more datasets; group C (28% of pillows): snow 
pillow near center of all datasets; group D (25% of pillows): snow pillow < 8 or more 
datasets. 



     
     

           
        

         
         

Fig. 9: (a) Median basin-mean WY2008 Pinferred (mm). (b-k) Categorical 
difference of gridded dataset basin-mean precipitation (P) and 
Pinferred. Categories are: 1:P < min Pinferred, 2: min Pinferred < P < 25th % 
Pinferred, 3: 25th % Pinferred < P < 50th % Pinferred, 4: 50th % Pinferred < P < 75th 

% Pinferred, 5: 75th % Pinferred < P < max Pinferred, 6: max Pinferred < P. Note 
that categories 3 and 4 are within the interquartile range of 
uncertainty. 



Fig.  10:  (a)  Basin-mean  precipitation (mm) from  gridded  datasets  (see  legend), as  a  
function  of Pinferred (black crosses).  Large b lack  crosses  show  median  and  gray  shading  
bounded by  smaller  black  crosses show  interquartile range (IQR)  of  Pinferred. (b)  Linear fit  
for  each  dataset.  Black  solid  line  shows  Bayesian  median  and  gray shading bounded by 
black  dashed lines show  IQR. 
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